If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-28x-66=0
a = 2; b = -28; c = -66;
Δ = b2-4ac
Δ = -282-4·2·(-66)
Δ = 1312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1312}=\sqrt{16*82}=\sqrt{16}*\sqrt{82}=4\sqrt{82}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-4\sqrt{82}}{2*2}=\frac{28-4\sqrt{82}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+4\sqrt{82}}{2*2}=\frac{28+4\sqrt{82}}{4} $
| 30y+7=73y=- | | -4m+8=-32 | | f(4)=34+1 | | 14x+6=8x+12 | | 4n+2=6(1−32) | | 4n+2=6(1/3n−2/3) | | |2x+7|=5x+3 | | -6x+15=8-3x | | 4(x+3)=2(2x-7) | | 2x+3x+5x=-104 | | 4-x=15x | | 2x+3+2x+1=160 | | 26(17-3y/8)-5y=11 | | 26(17-3y÷8)-5y=11 | | 4a+6=2a | | 14+7d=3(4-2d) | | 8x+17=90 | | x2=225,x | | h2+5h+4=0 | | 5u-18-3u=2(u-4)+10 | | 5u-18-3u=2(u-3)+10 | | 5−2x=3. | | 12(9-x)=84 | | 4+4x/5-2x/3=2 | | 3x×4=×+8 | | 3x-28=22 | | 0.99x3-0.000002x+4=0 | | 6x-16=29 | | 48-5y=24 | | 7+z=-1 | | x*(-12+2*x)=3024 | | 6y/30=0 |